Thesis docs
|
Main launcher file for MCMC simulation with various Bayesian non-parametric processes. More...
#include "samplers/neal.hpp"
#include "samplers/splitmerge.hpp"
#include "samplers/splitmerge_SAMS.hpp"
#include "processes/DP.hpp"
#include "processes/DPW.hpp"
#include "processes/NGGP.hpp"
#include "processes/NGGPW.hpp"
#include "utils/Data.hpp"
#include "utils/Likelihood.hpp"
#include "utils/Params.hpp"
#include "utils/Process.hpp"
#include <chrono>
Functions | |
RCPP_MODULE (params_module) | |
Rcpp module to expose the Params class to R. | |
Rcpp::List | mcmc (const Eigen::MatrixXd &distances, Params ¶m, const Rcpp::IntegerVector &initial_allocations_r=Rcpp::IntegerVector()) |
Main MCMC function for Bayesian non-parametric clustering. | |
Main launcher file for MCMC simulation with various Bayesian non-parametric processes.
This file contains the main MCMC implementation and R interface for running Bayesian non-parametric clustering using different processes (DP, DPW, NGGP, NGGPW) with various sampling strategies (Neal3, Split-Merge, Split-Merge SAMS).
Rcpp::List mcmc | ( | const Eigen::MatrixXd & | distances, |
Params & | param, | ||
const Rcpp::IntegerVector & | initial_allocations_r = Rcpp::IntegerVector() ) |
Main MCMC function for Bayesian non-parametric clustering.
This function performs Markov Chain Monte Carlo (MCMC) sampling for clustering analysis using various Bayesian non-parametric processes. It supports different process types (DP, DPW, NGGP, NGGPW) and sampling algorithms (Neal3, Split-Merge).
distances | A matrix of distances between data points (Eigen::MatrixXd) |
param | Reference to a Params object containing all MCMC parameters and hyperparameters |
initial_allocations_r | Optional initial cluster allocations (Rcpp::IntegerVector). If empty, random initialization will be used. |
The function: